As per usual some new reads at the beginning of the week. Enjoy reading.
The rock partridge, Alectoris graeca, is a polytypic species declining in Italy mostly due to anthropogenic causes, including the massive releases of the closely related allochthonous chukar partridge Alectoris chukar which produced the formation of hybrids. Molecular approaches are fundamental for the identification of evolutionary units in the perspective of conservation and management, and to correctly select individuals to be used in restocking campaigns. We analyzed a Cytochrome oxidase I (COI) fragment of contemporary and historical A. graeca and A. chukar samples, using duplicated analyses to confirm results and nuclear DNA microsatellites to exclude possible sample cross-contamination. In two contemporary specimens of A. graeca, collected from an anthropogenic hybrid zone, we found evidence of the presence of mtDNA heteroplasmy possibly associated to paternal leakage and suggesting hybridization with captive-bred exotic A. chukar. These results underline significant limitations in the reliability of mtDNA barcoding-based species identification and could have relevant evolutionary and ecological implications that should be accounted for when interpreting data aimed to support conservation actions.
DNA barcoding is a technique used primarily for the documentation and identification of biological diversity based on mitochondrial DNA sequences. Butterflies have received particular attention in DNA barcoding studies, although varied performance may be obtained due to different scales of geographic sampling and speciation processes in various groups. The montane Andean Satyrinae constitutes a challenging study group for taxonomy. The group displays high richness, with more of 550 species, and remarkable morphological similarity among taxa, which renders their identification difficult. In the present study, we evaluated the effectiveness of DNA barcodes in the identification of montane Andean satyrines and the effect of increased geographical scale of sampling on identification performance. Mitochondrial sequences were obtained from 104 specimens of 39 species and 16 genera, collected in a forest remnant in the northwest Andes. DNA barcoding has proved to be a useful tool for the identification of the specimens, with a well-defined gap and producing clusters with unambiguous identifications for all the morphospecies in the study area. The expansion of the geographical scale with published data increased genetic distances within species and reduced those among species, but did not generally reduce the success of specimen identification. Only in Forsterinaria rustica (Butler, 1868), a taxon with high intraspecific variation, the barcode gap was lost and low support for monophyly was obtained. Likewise, expanded sampling resulted in a substantial increase in the intraspecific distance in Morpho sulkowskyi (Kollar, 1850); Panyapedaliodes drymaea (Hewitson, 1858); Lymanopoda obsoleta (Westwood, 1851); and Lymanopoda labda Hewitson, 1861; but for these species, the barcode gap was maintained. These divergent lineages are nonetheless worth a detailed study of external and genitalic morphology variation, as well as ecological features, in order to determine the potential existence of cryptic species. Even including these cases, DNA barcoding performance in specimen identification was 100% successful based on monophyly, an unexpected result in such a taxonomically complicated group.
The blue pansy Junonia orithya Linnaeus, 1758 (Lepidoptera, Nymphalidae) is widely distributed along the tropical areas of Africa, Asia and Australia. It is also known as a migrant species in the Levant. Here we record Junonia orithya in south Israel and provide a DNA-barcode-based evidence for its Asian (non-African) origin.
The plastid genome of plants is the smallest and most gene-rich of the three genomes in each cell and the one generally present in the highest copy number. As a result, obtaining plastid DNA sequence is a particularly cost-effective way of discovering genetic information about a plant. Until recently, the sequence information gathered in this way was generally limited to small portions of the genome amplified by PCR, but recent advances in sequencing technology have stimulated a substantial rate of increase in the sequencing of complete plastid genomes. Within the last year, the number of complete plastid genomes accessible in public sequence repositories has exceeded 1000. This sudden flood of data raises numerous challenges in data analysis and interpretation but also offers the keys to potential insights across large swathes of plant biology. We examine what has been learnt so far, what more could be learnt if we look at the data in the right way, and what we might gain from the tens of thousands more genome sequences that will surely arrive in the next few years. The most exciting new discoveries are likely to be made at the interdisciplinary interfaces between molecular biology and ecology.
No comments:
Post a Comment