Wednesday, June 13, 2018

Interview with a vampire

In this study, we show for the first time that it is possible to use DNA meta-barcoding to generate data on both diet and the predator's population structure. And we more or less get this additional information for free because the vampire bat's DNA is found in the DNA that we extract from blood meal and faecal samples

When the sun sets in South and Central America, the vampire bats wake up and fly out in search of prey. The vampire bat's diet consists of blood. It prefers to feed on domestic animals such as cows and pigs, but when it does so, there is a risk of transmitting pathogens such as rabies. In order to control rabies transmitted by vampire bats, it is crucial to have a method that allows large-scale assessment of vampire bat prey. A study published back in April led by researchers from Denmark and the UK, shows that metabarcoding can do just that.

The colleagues analysed vampire bat blood meal and faecal samples collected in Peru, along the coast, in the Andes and in the Amazon. In diet studies, the metabarcoding is normally only used to assess diet, but in this study, the researchers went one step further and gathered information on the vampire bat's population structure. The latter is an approach very similar to work my group has been doing in collaboration with researchers in Germany. This 'free of charge' data can help researchers understand how the landscape influences the connectivity of vampire bat populations, which could influence the spread of pathogens. 

We are slowly beginning to understand that all the metabarcoding data we generate to better understand community composition of a given environment contains several layers of information. It is perhaps much richer than an OTU table. That being said it is an entire different story on how to release let alone disentangle all that information.

It is great to gain insight into both predator and prey from DNA in droppings and blood meals. Apart from feeding on domestic animals, vampire bats occasionally took blood from wild tapirs, so the method may be useful for determining the distribution of elusive mammal prey. It is also of note that we found no evidence of vampire bats feeding on humans from the DNA left over from their dinners.





No comments:

Post a Comment