Back after a longer hiatus with more reads for you. Too much work and a little bit of vacation in between didn't allow for much posting. Let's if some reshuffling of things work better. Well, enough about me, back to other's papers (although the first is mine ;-) ):
Continuously increasing demand for plant and animal products causes unsustainable depletion of biological resources. It is estimated that one-quarter of sharks and rays are threatened worldwide and although the global fin trade is widely recognized as a major driver, demand for meat, liver oil, and gill plates also represents a significant threat. This study used DNA barcoding and 16 S rRNA sequencing as a method to identify shark and ray species from dried fins and gill plates, obtained in Canada, China, and Sri Lanka. 129 fins and gill plates were analysed and searches on BOLD produced matches to 20 species of sharks and five species of rays or – in two cases – to a species pair. Twelve of the species found are listed or have been approved for listing in 2017 in the appendices of the Convention on International Trade in Endangered Species of Fauna and Flora (CITES), including the whale shark (Rhincodon typus), which was surprisingly found among both shark fin and gill plate samples. More than half of identified species fall under the IUCN Red List categories ‘Endangered’ and ‘Vulnerable’, raising further concerns about the impacts of this trade on the sustainability of these low productivity species.
Community assembly is determined by a combination of historical events and contemporary processes that are difficult to disentangle, but eco-evolutionary mechanisms may be uncovered by the joint analysis of species and genetic diversity across multiple sites. Mountain streams across Europe harbour highly diverse macroinvertebrate communities whose composition and turnover (replacement of taxa) among sites and regions remain poorly known. We studied whole-community biodiversity within and among six mountain regions along a latitudinal transect from Morocco to Scandinavia at three levels of taxonomic hierarchy: genus, species and haplotypes. Using DNA barcoding of four insect families (>3100 individuals, 118 species) across 62 streams, we found that measures of local and regional diversity and intraregional turnover generally declined slightly towards northern latitudes. However, at all hierarchical levels we found complete (haplotype) or high (species, genus) turnover among regions (and even among sites within regions), which counters the expectations of Pleistocene postglacial northward expansion from southern refugia. Species distributions were mostly correlated with environmental conditions, suggesting a strong role of lineage- or species-specific traits in determining local and latitudinal community composition, lineage diversification and phylogenetic community structure (e.g., loss of Coleoptera, but not Ephemeroptera, at northern sites). High intraspecific genetic structure within regions, even in northernmost sites, reflects species-specific dispersal and demographic histories and indicates postglacial migration from geographically scattered refugia, rather than from only southern areas. Overall, patterns were not strongly concordant across hierarchical levels, but consistent with the overriding influence of environmental factors determining community composition at the species and genus levels.
Throughout the world DNA banks are used as storage repositories for genetic diversity of organisms ranging from plants to insects to mammals. Designed to preserve the genetic information for organisms of interest, these banks also indirectly preserve organisms’ associated microbiomes, including fungi associated with plant tissues. Studies of fungal biodiversity lag far behind those of macroorganisms, such as plants, and estimates of global fungal richness are still widely debated. Utilizing previously collected specimens to study patterns of fungal diversity could significantly increase our understanding of overall patterns of biodiversity from snapshots in time. Here, we investigated the fungi inhabiting the phylloplane among species of the endemic Hawaiian plant genus, Clermontia (Campanulaceae). Utilizing next generation DNA amplicon sequencing, we uncovered approximately 1,780 fungal operational taxonomic units from just 20 DNA bank samples collected throughout the main Hawaiian Islands. Using these historical samples, we tested the macroecological pattern of decreasing community similarity with decreasing geographic proximity. We found a significant distance decay pattern among Clermontia associated fungal communities. This study provides the first insights into elucidating patterns of microbial diversity through the use of DNA bank repository samples.
Metabarcoding of environmental samples has many challenges and limitations that require carefully considered laboratory and analysis workflows to ensure reliable results. We explore how decisions regarding study design, laboratory set-up, and bioinformatic processing affect the final results, and provide guidelines for reliable study of environmental samples.
We evaluate the performance of four primer sets targeting COI and 16S regions characterizing arthropod diversity in bat faecal samples, and investigate how metabarcoding results are affected by parameters including: (1) number of PCR replicates per sample, (2) sequencing depth, (3) PCR replicate processing strategy (i.e. either additively, by combining the sequences obtained from the PCR replicates, or restrictively, by only retaining sequences that occur in multiple PCR replicates for each sample), (4) minimum copy number for sequences to be retained, (5) chimera removal, and (6) similarity thresholds for Operational Taxonomic Unit (OTU) clustering. Lastly, we measure within- and between-taxa dissimilarities when using sequences from public databases to determine the most appropriate thresholds for OTU clustering and taxonomy assignment.
Our results show that the use of multiple primer sets reduces taxonomic biases and increases taxonomic coverage. Taxonomic profiles resulting from each primer set are principally affected by how many PCR replicates are carried out per sample and how sequences are filtered across them, the sequence copy number threshold and the OTU clustering threshold. We also report considerable diversity differences between PCR replicates from each sample. Sequencing depth increases the dissimilarity between PCR replicates unless the bioinformatic strategies to remove allegedly artefactual sequences are adjusted according to the number of analysed sequences. Finally, we show that the appropriate identity thresholds for OTU clustering and taxonomy assignment differ between markers.
Metabarcoding of complex environmental samples ideally requires (1) investigation of whether more than one primer sets targeting the same taxonomic group is needed to offset primer biases, (2) more than one PCR replicate per sample, (3) bioinformatic processing of sequences that balance diversity detection with removal of artefactual sequences, and (4) empirical selection of OTU clustering and taxonomy assignment thresholds tailored to each marker and the obtained taxa.
Taxonomy assignment approach determines the efficiency of identification of OTUs in marine nematodes
Precision and reliability of barcode-based biodiversity assessment can be affected at several steps during acquisition and analysis of data. Identification of operational taxonomic units (OTUs) is one of the crucial steps in the process and can be accomplished using several different approaches, namely, alignment-based, probabilistic, tree-based and phylogeny-based. The number of identified sequences in the reference databases affects the precision of identification. This paper compares the identification of marine nematode OTUs using alignment-based, tree-based and phylogeny-based approaches. Because the nematode reference dataset is limited in its taxonomic scope, OTUs can only be assigned to higher taxonomic categories, families. The phylogeny-based approach using the evolutionary placement algorithm provided the largest number of positively assigned OTUs and was least affected by erroneous sequences and limitations of reference data, compared to alignment-based and tree-based approaches.
Biota monitoring in ports is increasingly needed for biosecurity reasons and safeguarding marine biodiversity from biological invasion. Present and future international biosecurity directives can be accomplished only if the biota acquired by maritime traffic in ports is controlled. Methodologies for biota inventory are diverse and now rely principally on extensive and labor-intensive sampling along with taxonomic identification by experts. In this study, we employed an extremely simplified environmental DNA (eDNA) sampling methodology from only three 1-L bottles of water per port, followed by metabarcoding (high-throughput sequencing and DNA-based species identification) using 18S rDNA and Cytochrome oxidase I as genetic barcodes. Eight Bay of Biscay ports with available inventory of fouling invertebrates were employed as a case study. Despite minimal sampling efforts, three invasive invertebrates were detected: the barnacle Austrominius modestus, the tubeworm Ficopomatus enigmaticus and the polychaete Polydora triglanda. The same species have been previously found from visual and DNA barcoding (genetic identification of individuals) surveys in the same ports. The current costs of visual surveys, conventional DNA barcoding and this simplified metabarcoding protocol were compared. The results encourage the use of metabarcoding for early biosecurity alerts.
The DNA barcode reference library for Lepidoptera holds much promise as a tool for taxonomic research and for providing the reliable identifications needed for conservation assessment programs. We gathered sequences for the barcode region of the mitochondrial cytochrome c oxidase subunit I gene from 160 of the 176 nominal species of Erebidae moths (Insecta: Lepidoptera) known from the Iberian Peninsula. These results arise from a research project which constructing a DNA barcode library for the insect species of Spain. New records for 271 specimens (122 species) are coupled with preexisting data for 38 species from the Iberian fauna. Mean interspecific distance was 12.1%, while the mean nearest neighbour divergence was 6.4%. All 160 species possessed diagnostic barcode sequences, but one pair of congeneric taxa (Eublemma rosea and Eublemma rietzi) were assigned to the same BIN. As well, intraspecific sequence divergences higher than 1.5% were detected in four species which likely represent species complexes. This study reinforces the effectiveness of DNA barcoding as a tool for monitoring biodiversity in particular geographical areas and the strong correspondence between sequence clusters delineated by BINs and species recognized through detailed taxonomic analysis.
In this experimental study the patterns in early marine biofouling communities and possible implications for surveillance and environmental management were explored using metabarcoding, viz. 18S ribosomal RNA gene barcoding in combination with high-throughput sequencing. The community structure of eukaryotic assemblages and the patterns of initial succession were assessed from settlement plates deployed in a busy port for one, five and 15 days. The metabarcoding results were verified with traditional morphological identification of taxa from selected experimental plates. Metabarcoding analysis identified > 400 taxa at a comparatively low taxonomic level and morphological analysis resulted in the detection of 25 taxa at varying levels of resolution. Despite the differences in resolution, data from both methods were consistent at high taxonomic levels and similar patterns in community shifts were observed. A high percentage of sequences belonging to genera known to contain non-indigenous species (NIS) were detected after exposure for only one day.
No comments:
Post a Comment