More to read including some from the rather large backlog. Have a great weekend with some good reads.
DNA barcoding involves the use of one or more short, standardized DNA fragments for the rapid identification of species. A 648-bp segment near the 5' terminus of the mitochondrial cytochrome c oxidase subunit I (COI) gene has been adopted as the universal DNA barcode for members of the animal kingdom, but its utility in mushrooms is complicated by the frequent occurrence of large introns. As a consequence, ITS has been adopted as the standard DNA barcode marker for mushrooms despite several shortcomings. This study employed newly designed primers coupled with cDNA analysis to examine COI sequence diversity in six species of Pleurotus and compared these results with those for ITS. The ability of the COI gene to discriminate six species of Pleurotus, the commonly cultivated oyster mushroom, was examined by analysis of cDNA. The amplification success, sequence variation within and among species, and the ability to design effective primers was tested. We compared ITS sequences to their COI cDNA counterparts for all isolates. ITS discriminated between all six species, but some sequence results were uninterpretable, because of length variation among ITS copies. By comparison, a complete COI sequences were recovered from all but three individuals of Pleurotus giganteus where only the 5' region was obtained. The COI sequences permitted the resolution of all species when partial data was excluded for P. giganteus. Our results suggest that COI can be a useful barcode marker for mushrooms when cDNA analysis is adopted, permitting identifications in cases where ITS cannot be recovered or where it offers higher resolution when fresh tissue is. The suitability of this approach remains to be confirmed for other mushrooms.
Environmental bulk samples often contain many different taxa that vary several orders of magnitude in biomass. This can be problematic in DNA metabarcoding and metagenomic high-throughput sequencing approaches, as large specimens contribute disproportionately high amounts of DNA template. Thus, a few specimens of high biomass will dominate the dataset, potentially leading to smaller specimens remaining undetected. Sorting of samples by specimen size (as a proxy for biomass) and balancing the amounts of tissue used per size fraction should improve detection rates, but this approach has not been systematically tested. Here, we explored the effects of size sorting on taxa detection using two freshwater macroinvertebrate bulk samples, collected from a low-mountain stream in Germany. Specimens were morphologically identified and sorted into three size classes (body size < 2.5 × 5, 5 × 10, and up to 10 × 20 mm). Tissue powder from each size category was extracted individually and pooled based on tissue weight to simulate samples that were not sorted by biomass ("Unsorted"). Additionally, size fractions were pooled so that each specimen contributed approximately equal amounts of biomass ("Sorted"). Mock samples were amplified using four different DNA metabarcoding primer sets targeting the Cytochrome c oxidase I (COI) gene. Sorting taxa by size and pooling them proportionately according to their abundance lead to a more equal amplification of taxa compared to the processing of complete samples without sorting. The sorted samples recovered 30% more taxa than the unsorted samples at the same sequencing depth. Our results imply that sequencing depth can be decreased approximately fivefold when sorting the samples into three size classes and pooling by specimen abundance. Even coarse size sorting can substantially improve taxa detection using DNA metabarcoding. While high-throughput sequencing will become more accessible and cheaper within the next years, sorting bulk samples by specimen biomass or size is a simple yet efficient method to reduce current sequencing costs.
Second-generation, high-throughput sequencing methods have greatly improved our understanding of the ecology of soil microorganisms, yet the short barcodes (< 500 bp) provide limited taxonomic and phylogenetic information for species discrimination and taxonomic assignment. Here, we utilized the third-generation Pacific Biosciences (PacBio) RSII and Sequel instruments to evaluate the suitability of full-length internal transcribed spacer (ITS) barcodes and longer rRNA gene amplicons for metabarcoding Fungi, Oomycetes and other eukaryotes in soil samples. Metabarcoding revealed multiple errors and biases: Taq polymerase substitution errors and mis-incorporating indels in sequencing homopolymers constitute major errors; sequence length biases occur during PCR, library preparation, loading to the sequencing instrument and quality filtering; primer-template mismatches bias the taxonomic profile when using regular and highly degenerate primers. The RSII and Sequel platforms enable the sequencing of amplicons up to 3000 bp, but the sequence quality remains slightly inferior to Illumina sequencing especially in longer amplicons. The full ITS barcode and flanking rRNA small subunit gene greatly improve taxonomic identification at the species and phylum levels, respectively. We conclude that PacBio sequencing provides a viable alternative for metabarcoding of organisms that are of relatively low diversity, require > 500-bp barcode for reliable identification or when phylogenetic approaches are intended.
INTRODUCTION:
Herbal medicines play an important role globally in the health care sector and in industrialised countries they are often considered as an alternative to mono-substance medicines. Current quality and authentication assessment methods rely mainly on morphology and analytical phytochemistry-based methods detailed in pharmacopoeias. Herbal products however are often highly processed with numerous ingredients, and even if these analytical methods are accurate for quality control of specific lead or marker compounds, they are of limited suitability for the authentication of biological ingredients.
OBJECTIVE:
To review the benefits and limitations of DNA barcoding and metabarcoding in complementing current herbal product authentication.
METHOD:
Recent literature relating to DNA based authentication of medicinal plants, herbal medicines and products are summarised to provide a basic understanding of how DNA barcoding and metabarcoding can be applied to this field.
RESULTS:
Different methods of quality control and authentication have varying resolution and usefulness along the value chain of these products. DNA barcoding can be used for authenticating products based on single herbal ingredients and DNA metabarcoding for assessment of species diversity in processed products, and both methods should be used in combination with appropriate hyphenated chemical methods for quality control.
CONCLUSIONS:
DNA barcoding and metabarcoding have potential in the context of quality control of both well and poorly regulated supply systems. Standardisation of protocols for DNA barcoding and DNA sequence-based identification are necessary before DNA-based biological methods can be implemented as routine analytical approaches and approved by the competent authorities for use in regulated procedures.
An understanding of how biotic interactions shape species' distributions is central to predicting host-symbiont responses under climate change. Switches to locally adapted algae have been proposed to be an adaptive strategy of lichen-forming fungi to cope with environmental change. However, it is unclear how lichen photobionts respond to environmental gradients, and whether they play a role in determining the fungal host's upper and lower elevational limits. Deep-coverage Illumina DNA metabarcoding was used to track changes in the community composition of Trebouxia algae associated with two phylogenetically closely related, but ecologically divergent fungal hosts along a steep altitudinal gradient in the Mediterranean region. We detected the presence of multiple Trebouxia species in the majority of thalli. Both altitude and host genetic identity were strong predictors of photobiont community assembly in these two species. The predominantly clonally dispersing fungus showed stronger altitudinal structuring of photobiont communities than the sexually reproducing host. Elevation ranges of the host were not limited by the lack of compatible photobionts. Our study sheds light on the processes guiding the formation and distribution of specific fungal-algal combinations in the lichen symbiosis. The effect of environmental filtering acting on both symbiotic partners appears to shape the distribution of lichens.
No comments:
Post a Comment